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Abstract. A general, conformally invariant theory of the general relativistic, gravitational 
field coupled with a scalar field is considered. The field equations of the theory are derived 
from a variational action principle and also from the assumption of the geodesic motion of 
test particles. These are shown to be identical. The scalar field is assumed to be a long-range 
field with the view to establishing a cosmological theory. An upper bound for the 
background scalar field is estimated. 

1. Introduction 

1 The only empirically observed, long-range fields are those corresponding to spin S = 2, 
1 and 2, that is, the neutrino, the electromagnetic and the gravitational fields respec- 
tively. It is difficult to obtain consistent field equations for a long-range field with S = 2, 
but not for a scalar field with S = 0. In fact, such a (scalar) field, determined by an 
homogeneous wave equation, has been suggested in connection with the Brans-Dicke 
cosmology (Brans and Dicke 1961), though it has not been hitherto observed. 

There are several reasons why one should require the scalar field 4 coupling with a 
general relativistic gravitational field gii (Latin indices i , j  going from 1 to 4) to be 
conformally invariant, that is, invariant under the transformations 

gij = e-"gij, 4' = e-*4, (1) 

where (+ is a scalar function of the space-time coordinates x i ,  and p is a constant. The 
gravitational field equations can be written in a conformally invariant way and the 
neutrino and electromagnetic fields are known to be conformal. One would expect the 
quanta of a zero rest mass field to m w e  along null geodesics 

ds = 0, (2) 

which remain invariant under all conformal mappings. 

with /3 = i, 
It has been shown by Penrose (1965) that a conformally invariant wave equation is, 

04 +iR# = 0, (3) 

where 04 = gi'qiij; R = giiRii, and Rij is the R i d  tensor while semicolons denote, as 
usual, covariant differentiation with respect to the coordinates. 

1637 
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In fact, under a transformation (l), we have 

04 + A R 4  + B4” 

= e ” - ’ ) ~ ~ 4 ’ + ~ ( d k ; k  +( I  +p)(+,kdk)4’+(2p + l ) u , k d k  

(4) +AR’4’+3Adk,k4’+Sa,kdk4’]+B e n&r 4 in , 

A, B, n constant. Hence 

o + + A R + + B + ”  =ecS-1’u(0‘4’+ARiq5’+B4’n) 

if and only if, A = a ,  p = -4, n = 3,  so that, the most general inhomogeneous, confor- 
mally invariant, wave equation is given by 

m + : ~ 4  +4 = 0, (5)  

where a is a constant. If need be, one can further insert on the right-hand side of 
equation (5 )  a source term, say T/A. 

Variational derivation of such wave equations coupled to gravitational fields has 
been discussed by Freund (1974), and Bramson (1974), whose matter Lagrangian was 
constructed from a Dirac field $. 

In this paper we are going to study a general, conformal scalar field coupling 
consistent with general relativistic theory. Our aim is to relate the resulting field 
equations to cosmological considerations. Some of these will be discussed in a 
subsequent publication. 

2. Phenomenological derivation of the field equations 

Consider the field equations 

fG,, + 8 ~ T j  +A4,i4,j + Bgi,4,k(Vk + 
Ck$ +:R4 +a43 = 8rT/A, 

+ DgiiCk$ + Egi, = 0, (6) 

(7) 

where f ,  A, B, C, D and E are functions of 4 only, Gij = Rij -$Rgi,, is the Einstein 
tensor, Tj  is the energy-stress-momentum tensor of matter, T = g”Tj, and a, A are 
constants. 

It is well known that 

4jG/ = (04),i -04.i -3R4.i. 

-fR +87rT+(A + 4 B ) 4 , k ~ $ ~  + ( C + 4 D ) C @ + 4 E = O ,  (9)  

(8) 

Also, contracting equations (6) with the help of g’”: 

or eliminating T between equations (7)  and (9),  and solving for R 

(C + 4 0  + A)O4 + ( A  + 4B)4,k(Vk + aA43 + 4E R =  
f -& 9 

providing 

f &4. 
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Raising the index j in (6), taking the divergence, using equations (8) and (9) and 
requiring that T,’ should be conserved, 

= 0, (12) 

we easily find that 

f’[(m),i - @ , i  -iR4,iI+A’d,i4,kVk +B‘4,i4,kVk + @4,k4,i;k 
+ D’+,iO4 + E’4.i +A4,iVk;k. 

+ B4;k&k +B4,kVk;i + a 4 . i  + O(O4I.i = 0, (13) 

primes denoting differentiation with respect to 4. Equation (13) must be satisfied 
identically. Eliminating from it R with the help of (lo), and equating to zero the 
coefficients of w,~, 4,im, and f$;ik4‘, respectively, we obtain the 
following six ordinary differential equations: 

f’+D=O, 

f’-C=O, 
2 C’ =’ (C+4D + A )  + A  + D’ = 0, 

A 4  -6f 

3f’ ( A  +4B) + A ’ +  B’ = 0, 
A 4  -6f 

3f’ ( ~ A ~ ~ + ~ E ) + E ’ = O .  
A 4  -6f 

Equations (14) serve to determine the six unknown functions f, A, B, C, D and E of 
4 consistently with the equations (6) and (7). We may notice that the first five of these 
functions are determined by equations (14a) to (14e), and that once these are solved 
(14f) will determine E. 

3. Derivation of the field equations continued 

Let us solve first the simultaneous equations (14a) to (14e). Let 

h =A4 -6f # 0. 

Then from (14a, 6, c and e), 

C = - F = L  & -h’h 

A = -dh”-- :(A - ht2)/h, 

B =dh”+g(A 2 -  h”)/h, 

and, substituting into (14d) and simplifying, 

2hh”+A2- ht2 = 0. 
Let 

U = l / h ’ =  d4/dh, U = du/dh. 



1640 G V Bicknell and A H Klotz 

Equation (17) then reduces to 

2 h r i = ~ ( A ~ ~ ~ - l ) .  

Integrating equation (18) twice, we obtain 

2 (4 +dol2 h = h  a -  4a ’ 
where a and 4o are constants of integration, and 

1 
f=i ( -A2a+AC$+ (d+40)2) 4a = --[8A2a 24a + ~ U A $ ~ - ( C $ + ~ ~ + ~ A ~ ) ~ ] .  

Also 
3f’ 3f’ 1 A+E(d+do)/2al - 1 -=-=- 
h Ad-f 2a A 2 - [ ( d + + o ) 2 / 4 a 2 ] - 2 A a - ~ o - ~ ‘  

Equation (14f) can therefore be written in the form 

= 0, 
d E  4E ~ r A ( y - + ) ~  ---- 
dCL CL CL 

where + = 2 ~ A - 4 ~ - 4 ,  ~ = 2 a A - 4 ~ .  
Hence, if K is a third constant of integration, 

3 
E=aA(--+4++3--+ K 3Y 2 + Y ~ + - ~ )  

f fA 2 4 -  

This result is compatible with a conformally invariant wave equation if E is a power 
(fourth) of a linear function of 6, and hence, only if 

K = -aA/4 y, 

E = -(ah/4 y)d4. 
when 

It follows that, apart from the constants of integration a and do the functionsf, A, B, 
C, D and E are uniquely determined from the requirement that K j  should be 
conserved. The gravitational field equations coupled to the scalar field are 

where 4’=4,+2aA. 

4. Variational derivation of the field equations 

We show now that equations (24) and (7) can be derived from a single variational action 
principle. Consider first an action principle of the form 

8 J (Fg’jRij + Mg”c$,,+j + N - 81rL~)J-g d4x = 0, (25) 
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where F, M and N are scalar functions of @ only and L, denotes a matter term, or 
source action of the field to be varied with respect to gij only. The energy-stress- 
momentum tensor T, is proportional to the Hamiltonian derivative of L, with respect 
to g ” ,  say 

T j  = hL,/ hg”. 

Hence, with the usual conditions on the boundary of the region of integration, we 
obtain 

I{[(FRij +M4,i@,j)  -igij(FR +M@,k@k + N )  +(F; ,  -gijgklF;kl) - 8 ~ T ~ ] . l S g ”  

+[FIR + M‘4,kVk - 2 M n 4  + N‘)S@}J-g d4x = 0. 

Since 

F;ij = F @ , i @ , j  + F’@;ij, gklF;kl = F’@,kcp’k + Flu@, 

and the variations in g” and @ are assumed to be independent, we get the field equations 

We must next eliminate the term @ ‘ R  from (28) which now reads 

@ + @ ‘ R + - 0 @ + - @ 3 = 0 .  1 2aA 
12a 2a Y 

Also, contracting equation (27) (or (24)) with g ” ,  

1 1 ah 

24a 4a Y 
- [4aA@’-(@+@’)2]R--(@+@r)O@--44+8.rrT=0.  

Hence, multiplying equation (30) by $(@ +@‘)and adding to equation (31): 

so that, substituting R into equation (31) for +‘R,  from equation (32), and putting 
4aA = y+4 ’ ,  

a@ + i @ R  +a@3 = ~ T T / A ,  

that is, equations (30) and (7) are equivalent. This completes our variational derivation 
of the field equations with the consequence that they are, in general, compatible. We 
shall obtain some cosmological solutions to these equations in the subsequent paper 
already mentioned. 
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It is convenient to eliminate a factor 2Aly from the Lagrangian so that, for the free 
field, it becomes 

The factor y/2A may be absorbed into the matter term L,. 
If we now introduce constants p, U and q by 

Y4” = p2 ,  Y l ( Y  + 4’) = 9, 12cLvIq = 4Jf, (34) 
so that q = 1 - 12u2, the free-field Lagrangian becomes 

or 
(p2-2pU4 -&pP2)R +$q4,k&k -tacp4. 

In the special case therefore, when 

q = o ,  (37) 
the action acquires the form 

I ($R -&up4 - 8 7 r L , ) ~ g  d4x, 

where I) = p2 - 2pu4. The quartic term - $ ( ~ 4 ~ ,  has the form of a (variable) cosmologi- 
cal term and plays no part in the empirical test of gravitational theory based on 
observations within the solar system. However, if this term is omitted, variation of (38) 
leads to the special case of the Brans-Dicke theory with vanishing coupling constant. 
This particular case of the theory is known to be contradicted by observational 
evidence. Hence, and also to obtain the correct sign of the 4 , k @ k  term, we must require 
that 

This allows us to change the constants and the scalar field by 6 = y4, /i = yp, y 2  = la[, 
and to write the field equations in the final form ( y  is not the same y as previously used): 

q = l - 1 2 v 2 > 0 .  (39) 

- -  [/i2-&(6 + 1 2 / i ~ ) ~ ] G i j  +$J,i&,j -j$gj,G,k&k +:(6 + 12/i~)(gi jC@ -4;ij) 
+ (EJ4/8q)gij = - 8 v 2  Tj  (40) 

U 6  +&6 + aJ3 = -( 16nvy2/f i )T 

/ i 2R  = 8 ~ y ~ T - ( 6 ~ / i ~ / q ) c $ ~ ,  (42) 

(41) 

where E = * l  or 0, depending on the sign of a (a, of course, can be zero). 

5. Consequences of the scalar field coupling 

If the scalar field is constant, equations (40) are equivalent to Einstein’s gravitational 
field equations with a cosmological constant. On the other hand, equations (41) and 
(42) admit a solution 

(43) 6 =constant 
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for an arbitrary distribution of matter only if a vanishes. If 

a ZO, (44) 

such a solution is possible providing T is constant. This is an unreasonable restriction. 
Hence, if we are to achieve a genuine extension of Einstein's theory, inclusion of the 
non-zero parameter a is necessary. 

Incidentally, when 4 vanishes, the wave equation implies that the energy-stress- 
momentum tensor is traceless so that we have an electromagnetic field of the Einstein- 
Maxwell theory. Furthermore, equation (40) implies the dependence of the 'gravita- 
tional constant' G on the 6 field, of the form 

Hence, for a variable 6 field, G likewise is variable. This is a necessary consequence 
of the scalar field coupling. Similarly, comparison between equation (43) and the 
general relativistic expression 

shows that the cosmological 'constant' A is given by 

Since the equations (40) and (41) are invariant if the sign of 6 and of v is 
simultaneously changed, the sign of the pure number Y is arbitrary, and we shall assume 
in the second paper already mentioned that 

v < o .  (4') 

Let us consider next, in a background cosmological space-time, a perturbation to 
the background scalar field. Let us put 

6 = i o  + 41 

041 +(&0+3€4;)$1 = o  (50) 

(49) 

with Jl << io. The approximate wave equation for i1 is 

where Ro is the background value of the scalar curvature. The above equation will 
possess causality-preserving solutions if the sign of i R o + 3 ~ &  is negative. If Ro is 
negative as is the usual case in cosmological models in general relativity this condition is 
guaranteed if E = -1. It is possible that Ro may be ositive in this theory (cf equation 
(42)) in which case both the conditions E = -1 and Qo>$Ro are required. Hence in the 
sequel we shall assume that E = - 1 although the above argument shows that causality- 
preserving solutions of (50) are possible if E = + 1. 

Since equation (50) is a Klein-Gordon equation it predicts an effective range for the 
scalar field of the order of (3&-i&)-''*. Thus a large value of the background scalar 
field is incompatible with its assumed long-range nature and c $ ~  should be small in 
comparison to the radius of the universe. 

s 
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6. Conformal invariance of the gravitational and scalar fields 

Conformal invariance was used to justify the adoption of the wave equation (5)  for the 
scalar field, yet it is evident that the gravitational field equations (41) are not themselves 
conformally invariant. However, it may be shown that the field equations presented 
here are those of a conformally invariant theory expressed in a particular gauge. We are 
also able to shed further light on the assumption of the independence of the source 
Lagrangian upon 4. 

In connection with the former point it has been shown that general relativity itself is 
a conformally invariant theory expressed in a particular gauge (cf Bicknell 1976). The 
conformally invariant action for general relativity (without a cosmological term) may be 
expressed in the form 

where o is a conformally invariant scalar field. The above action is conformally 
invariant and reduces to that of general relativity in the gauge in which w is a constant. 
Now consider the action 

The free-field part of this action is also conformally invariant under the transformations 

The requirement of the invariance of 

Z,,, = / L m G  d4x 

under the infinitesimal coordinate transformation 

X I  = X I  I +  S t ’  

and the infinitesimal conformal transformation 

gij = (1  + w g ;  
yields 

1 0 J . I  1 d” TI.. - -sl - + -s* - 
” - 2  w 2 4 

T=iSlw+&$ 

where T’, S1 and S2 are defined by 

(55 )  

(59) 

We now make the assumption that the source terms are proportional, say 

s2 = 2 h v s 1 .  (60) 
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Since the scalar w + 2 h v 4  transforms as w or 4, a space may be chosen so that 

w + 2 h v 4  = constant = 2 h p ,  

say. Then 

0 = 2 h p  (1 - ;) 
and substitution of (62) and (60) into equation (57) implies that 

TJ,j = 0. (63) 
The equations of motion of a test particle are therefore geodesics of the space-time. In 
the particular space considered, that selected by the gauge condition (6 l), the free-field 
Lagrangian in the action integral (52) becomes that given by (36). 

It remains to justify the assumption made in 0 4 that one can neglect the dependence 
of the matter term upon 4. This in fact follows from our assumption (60) relating the 
source term of the w and 4 fields. This assumption together with the gauge condition 
(61) implies that 

slaw + S,&$l= 0 (64) 
and therefore, referring to equation (59) there is no contribution to SI, from 84. 

Thus it has been shown that the equations (40) and (41) of the scalar-tensor theory 
considered in 0 4 of this paper are in fact the equations of a conformally invariant theory 
expressed in a particular gauge. To make the theory manifestly conformally invariant it 
is necessary to introduce a further conformally invariant scalar field ( w )  into the 
framework which may be eliminated by the choice of a particular gauge. The gauge 
chosen here is in fact a sensible one since in it stress energy is conserved and the 
equations of motion are geodesics. 

It is of interest to consider here the equations for the scalar fields 4 in a general 
gauge. They are 

00 + iRw = -87~S1 

El+ +iR+ +mP3 = -87~S2. 

It can be seen here why the inclusion of the 43 term is necessary once the assumption 
has been made on the proportionality of the two source terms. If the 43 term were 
absent one could find solutions such that w and 4 were proportional. One could then 
choose a gauge in which both were constant and the theory would collapse to general 
relativity. Another way of introducing an asymmetry between the two scalar fields 
would be to introduce different source terms but that will not be considered in the 
present context. 
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